

Leveraging Technology and Informatics for Antimicrobial Stewardship

Edina Avdic, Pharm.D, M.B.A., BCPS-AQ ID
Associate Director, Antimicrobial Stewardship Program
The Johns Hopkins Hospital (JHH)
Baltimore, MD

Disclosure

All planners, presenters, and reviewers of this session report no financial relationships relevant to this activity.

Learning Objectives

- List antimicrobial stewardship tools available in electronic health record (EHR) platforms.
- Describe how the EHR and clinical decision support systems (CDSS) can be used together as a successful antimicrobial stewardship tool.
- Review commonly used CDSS and their role in enhancing antimicrobial stewardship.

Introduction

- Electronic health records (EHR) and Clinical Decision Support Systems (CDSSs)
- EHR: Epic System Corporation and Cerner Corporation
 - Largest U.S. market share
- Add-on CDSSs
 - Used for many years for antimicrobial stewardship and infection control activities
 - Enhance quality of care and improve patient outcomes

Antimicrobial Stewardship

Antimicrobial Stewardship (AS)

 "Coordinated interventions designed to improve and measure the appropriate use of antibiotic agents by promoting the selection of the optimal antibiotic drug regimen including dosing, duration of therapy, and route of administration"

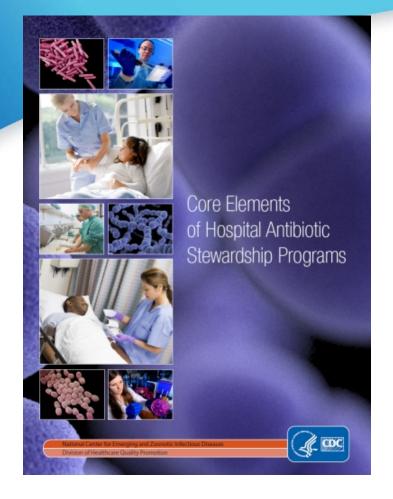
Antimicrobial Stewardship Programs (ASP)

Programs dedicated to improving antimicrobial use

Fishman N. *Infect Control Hosp Epidemiol* 2012;33(4):322-7. Barlam TF, et al. *Clin Infect Dis* 2016;62:e52-77.

Clinical Infectious Diseases

IDSA GUIDELINE



Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam,^{1,a} Sara E. Cosgrove,^{2,a} Lilian M. Abbo,³ Conan MacDougall,⁴ Audrey N. Schuetz,⁵ Edward J. Septimus,⁶ Arjun Srinivasan,⁷ Timothy H. Dellit,⁸ Yngve T. Falck-Ytter,⁹ Neil O. Fishman,¹⁰ Cindy W. Hamilton,¹¹ Timothy C. Jenkins,¹² Pamela A. Lipsett,¹³ Preeti N. Malani,¹⁴ Larissa S. May,¹⁵ Gregory J. Moran,¹⁶ Melinda M. Neuhauser,¹⁷ Jason G. Newland,¹⁸ Christopher A. Ohl,¹⁹ Matthew H. Samore,²⁰ Susan K. Seo,²¹ and Kavita K. Trivedi²²

- Leadership Commitment
- Accountability
- Drug Expertise
- Tracking
- Reporting
- Education

New Antimicrobial Stewardship Standard

APPLICABLE TO HOSPITALS AND CRITICAL ACCESS HOSPITALS

Effective January 1, 2017

Medication Management (MM)

Standard MM.09.01.01

The [critical access] hospital has an antimicrobial stewardship program based on current scientific literature.

Note: An example of an educational tool that can be used for patients and families includes the Centers for Disease Control and Prevention's Get Smart document, "Viruses or Bacteria—What's got you sick? at http://www.cdc.gov/getsmart/community/downloads/getsmart-chart.pdf.

- 4. The [critical access] hospital has an antimicrobial stewardship multidisciplinary team that includes the following members, when available in the setting:
 - Infectious disease physician

https://www.jointcommission.org/assets/1/6/HAP-CAH_Antimicrobial_Prepub.pdf; accessed 9/25/17

Antimicrobial Use and Resistance (AUR) Module

- Two options: Antimicrobial use (AU) and Antimicrobial resistance (AR)
- Voluntarily reporting to National Healthcare Safety Network (NHSN)
- Purpose: facilitate risk adjusted inter- and intra-facility benchmarking of antimicrobial usage
- Metrics: days of antimicrobial therapy (DOT)/ 1000 days present
- Data Source: e-MAR and/or bar coding medication record (BCMA)
- Format: Health Level (HL7) Clinical Document Architecture

ASP and Information Technology

IDSA guidelines

Incorporate computerized CDSS at the time of prescribing into ASPs

CDC core elements

Tracking: monitoring antibiotic prescribing and resistance patterns

Joint Commission standard

Hospital collects, analyzes, and reports data on its ASP

Impact of CDSS on Antibiotic Use

- Reduced use of broad spectrum antibiotics
- Improved antibiotic selection and dosing
- Fewer prescribing errors and adverse events
- Decrease in antibiotic costs and length of stay

Audience Poll

- How many of you currently use or plan to use one of these electronic systems for antibiotic stewardship?
 - A. EHR only
 - EPIC
 - Cerner
 - Other (Meditech or homegrown)
 - B. Add-on CDSS (non-EHR based)
 - C. Both A and B
 - D. Other

Audience Poll

- What is your current role?
 - A. Antimicrobial stewardship or ID pharmacist
 - B. Informatics/IT pharmacist
 - C. Administrative (including Director or VP of Pharmacy)
 - D. Pharmacy student or resident
 - E. Other

Single Electronic Health Record: Customizing Epic for Antimicrobial Stewardship

Edina Avdic, Pharm.D, M.B.A., BCPS-AQ ID
Associate Director, Antimicrobial Stewardship Program
The Johns Hopkins Hospital (JHH)
Baltimore, MD

Learning Objectives

- List antimicrobial stewardship tools available in electronic health record (EHR) platforms.
- Review commonly used clinical decision support systems (CDSSs) and their role in enhancing antimicrobial stewardship.
- Describe how both EHR and CDSS can be used together as a successful antimicrobial stewardship tool.

Epic EHR System

- One of the leading providers of EHR systems in U.S.
- 25.8% of the U.S. acute care hospital market share in 2016
- Fully integrated system incorporating all areas of patient care into a single database
- Primary focus on clinical functionality and patient care

Forrest GN, et al. Clin Infect Dis 2014; 59 (S3):S122-33.

http://www.beckershospitalreview.com/healthcare-information-technology/epic-cerner-hold-50-of-hospital-ehr-market-share-8-things-to-know.html; accessed 9/16/17

Antimicrobial Stewardship Tools

Entry level tools

- iVents
- Order panels and order sets
- IV to PO algorithms
- Order form and dose-checking
- Best practice advisories
- Patient scoring and monitoring
- 96-hour stop date
- Antibiotic indications

Advanced tools

- Epic 2014 and 2016 version
- Available at additional cost AS module (Willow)
- Infection control module (ICON)

Forrest GN, et al. Clin Infect Dis 2014; 59 (S3):S122-33.

Antimicrobial Stewardship Module

- AS Dashboard
 - Organizes all AS tools in one place
- AS Scoring System
 - Identifies patients for AS interventions
 - Allows easy documentation and communication
- iVents
 - Documentation of AS interventions
 - Integrated into AS dashboard
 - Allows for easy copy/paste into progress notes

ICON Module

- Enhances infection control activities
- Antibiotic use reports
 - Days of therapy (DOT)/1000 patient days present calculation using e-MAR data
 - Option to submit to NHSN-AUR module
- Workbench reporting
 - Real-time antibiogram reporting

The Johns Hopkins Health System

- Academic hospitals
 - The Johns Hopkins Hospital- 1,194 beds
 - Johns Hopkins Bayview Medical Center- 440 beds
 - Johns Hopkins All Children's (not using Epic)- 259 beds
- Community hospitals
 - Howard County General Hospital- 282 beds
 - Sibley Memorial Hospital- 318 beds
 - Suburban Hospital- 222 beds
- Epic was implemented at 5 hospitals

The Johns Hopkins Hospital AS Program

- Adult inpatients 2002
- Pediatric inpatients 2012
- CDDS
 - Theradoc[®] ~ 15 years
 - Epic AS and ICON module 2016

Stewardship Interventions

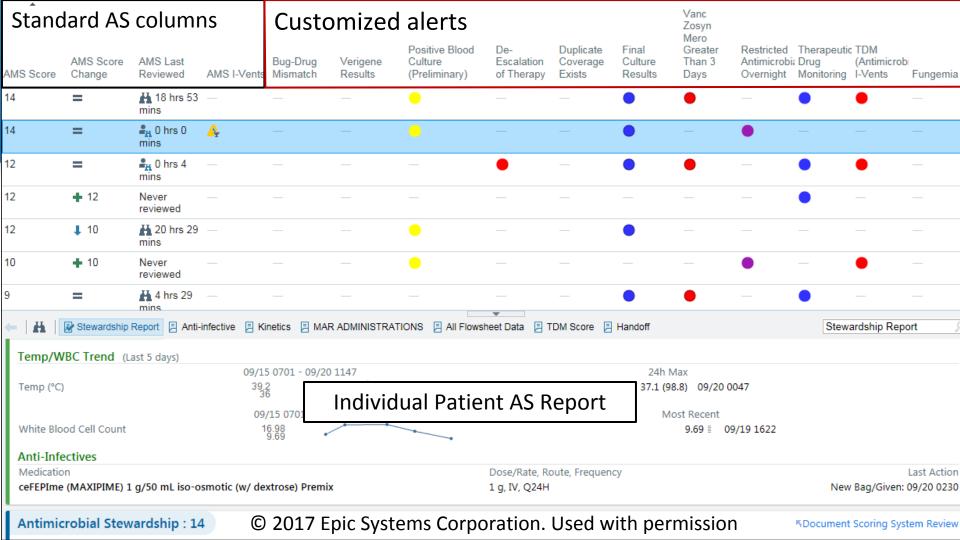
- Pre-authorization
- Prospective audit and feedback
- Syndrome interventions
- Rapid diagnostics interventions
- Pharmacy-driven interventions
- Guidelines for antibiotic use

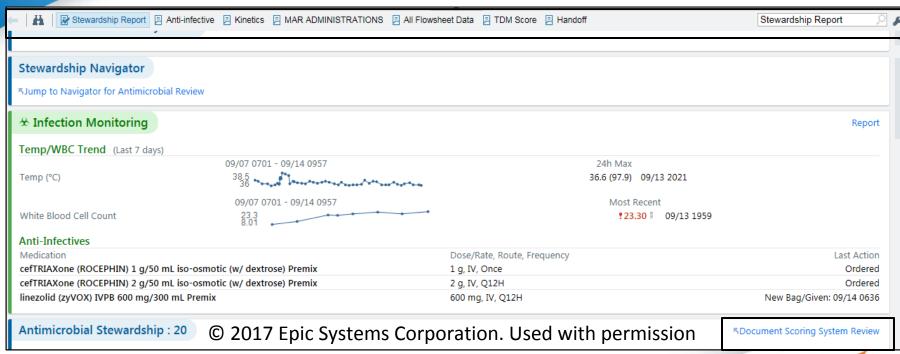
Metrics

DOT/1000 patient days present

Customization of AS Module

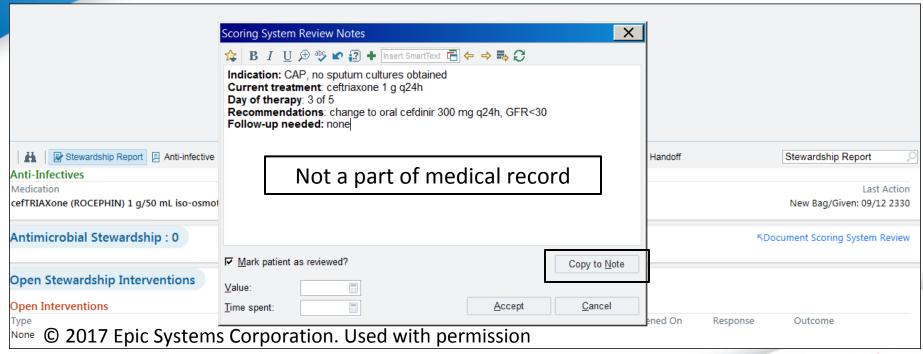
- AS module was developed by academic hospitals AS teams
- We started with a wish list
 - Patient identification
 - Scoring system (customized rules) vs. workbench reports
 - Documentation of AS interventions
 - AS interventions types and subtypes (iVents)
 - Indications requirement for select antibiotics
- Weekly calls with Epic build team for 1 year


Antimicrobial Stewardship Dashboard



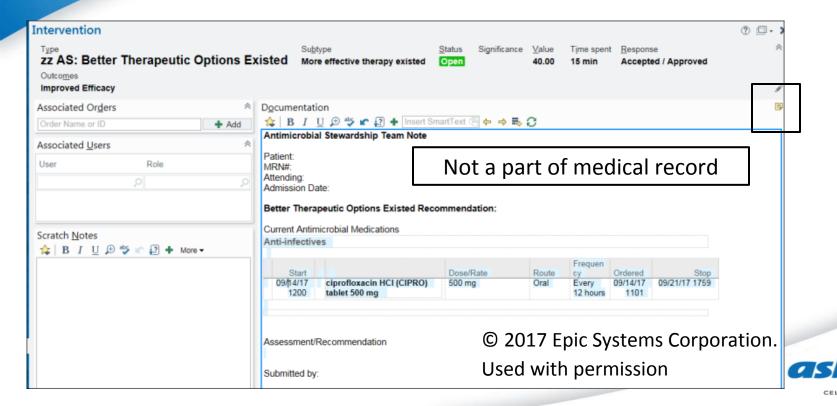
Customized Rules

Column Name	Rules	Score	Description
			Flag patients with Enterococcus faecalis spp in blood susceptible to
			ampicillin who are on vancomycin or linezolid (limit to blood cultures
RX AMS DE-ESCALATION EXISTS	RX AMS DE-ESCALATION ENTEROCOCCUS SUSCEPTIBLE TO AMPICILLIN	5	from last 5 days).
			Flag patients with MSSA (methicillin/oxacillin susceptible staph aureus) in
	RX AMS DE-ESCALATION MSSA (IN BLOOD) VANC SCORING	5	blood and on vancomycin (IV) (limit to cultures from last 5 days).
			Flag patients who are on micafungin and have positive blood cultures for
	RX AMS DE-ESCALATION MICAFUNGIN	3	candida that is susceptible to fluconazole.
			Flag patients who are on vancomycin and have MSSA isolated from non-
	RX AMS DE-ESCALATION MSSA (NON BLOOD) VANC SCORING	3	blood cultures. (lower score for non-blood)
RX AMS RESTRICTED ABX OUTSIDE			
TIMEFRAME (SCORING SYSTEM)	RX AMS RESTRICTED ABX OUTSIDE TIMEFRAME	5	Flags patients with open i-vents for overnight restricted antimicrobials
RX AMS PRELIMINARY POSITIVE BLOOD			Flags patients with peliminary positive blood cultures within the last 5
CULTURE	RX AMS PRELIMINARY POSITIVE BLOOD CULTURE	5	days.
			Flags patients with TDM for the following antimicrobials within the last 3
RX AMS THERAPEUTIC DRUG			days; Voriconazole, Itraconazole, Posaconazole, 5FC, Vancomycin,
MONITORING	RX AMS THERAPEUTIC DRUG MONITORING	3	Tobramycin, Amikacin, and Gentamycin
			Flags patients with peliminary positive blood cultures that have Verigene
RX AMS VERIGENE	RX AMS VERIGENE	5	identifications avialable within the past 3 days.



Stewardship Report

Documentation in Scoring System

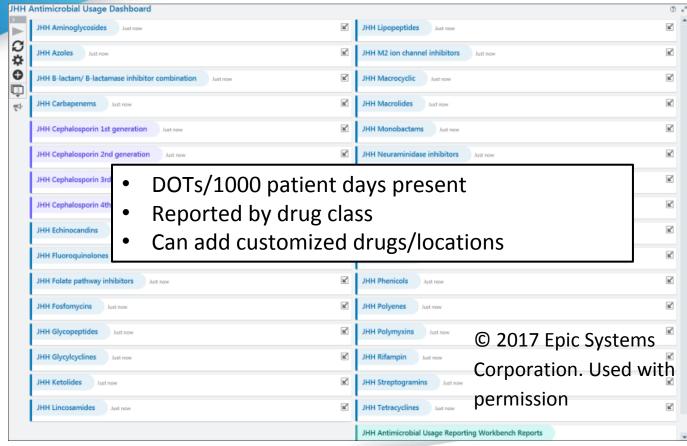


Antimicrobial StewardshipNavigator



Documenting Interventions

Report: AS I-vents



ICON

- Days of antimicrobial therapy (DOT) / 1,000 patient-days present
 - Followed CDC NHSN guidelines
 - Provided specs for customized reports
- Reporting to NHSN AUR module requires extensive validation
- Antibiograms
 - Clinical Laboratory Standards Institute antibiogram rules
 - List of existing antibiograms for each hospital

Antimicrobial Usage Dashboard

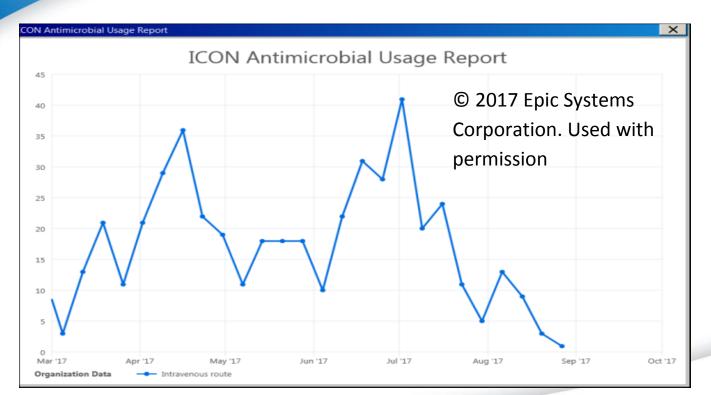
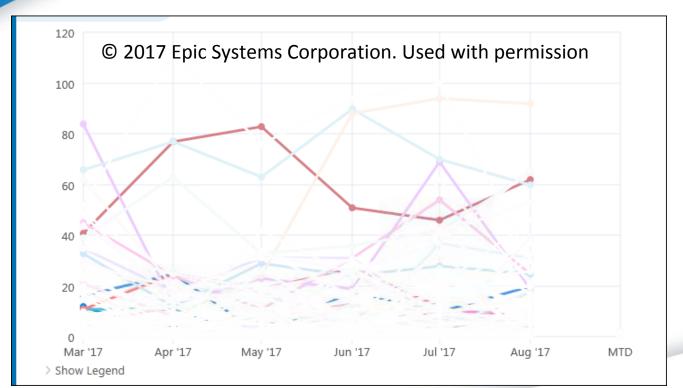
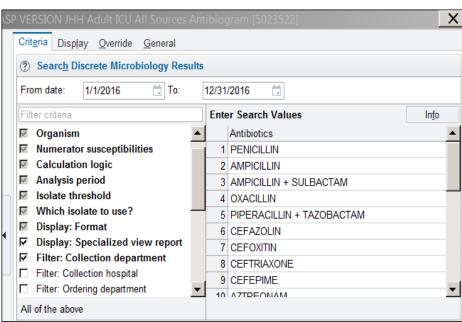


Table Format Display: Drug Class

JHH Carbapenems Just now	Carbapenems Oust now © 2017 Epic Systems Corporation. Used with permission							
	Mar	Apr	May	Jun	Jul	Aug	MTD	
> Location > Doripenem								
> —— Intravenous route	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
> Ertapenem								
> —— Intravenous route	5.00	4.00	4.00	1.00	0.00	0.00	0.00	
> Imipenem with Cilastatin	Imipenem with Cilastatin							
> —— Intravenous route	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
> Meropenem								
> —— Intravenous route	0.00	0.00	0.00	0.00	0.00	0.00	0.00	



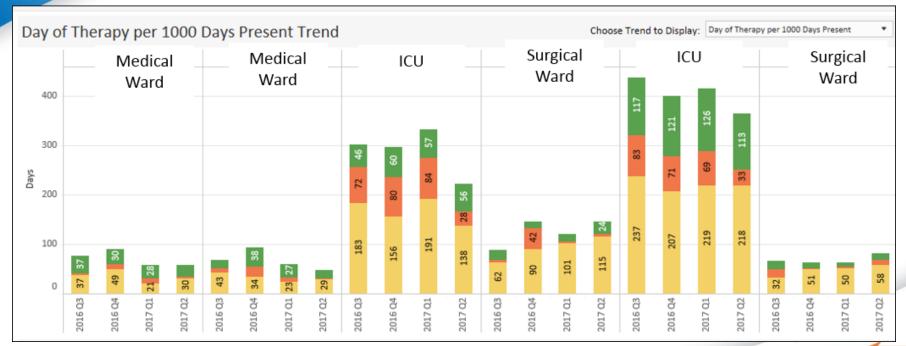
Graphic DisplaySingle Agent, Single Unit


Graphic DisplayDrug Class, All Units

Antibiogram Reporting

- :		-	-	-		-	-
4		98	82	88		2	100
-		-	-	81		6	81
0		0	90	98	10	0	100
-		-	-	-		-	-
-		-	-	-		-	-
-		-	-	-		-	-
-		-	100	-		-	-
100							
100	-	-	-	-	-		-
-	70	0	72	-	-	67	60
63	95	63	95	87	-	89	95
100	100	100	100	100	-	100	100
83	100	87	100	100	-	100	100
56	99	65	100	92	-	94	97
85	92	88	100	99	-	68	86

© 2017 Epic Systems Corporation. Used with permission



Extraction of Data

- Data from Epic can be extracted only in Excel format
- We used Tableau to build AS Dashboards
 - Allows more user customization in real time
 - Fast analytics
 - Easy to use and share
 - Automatic updates
 - User customization
 - Allowed us to get more than DOT/1000 patient days

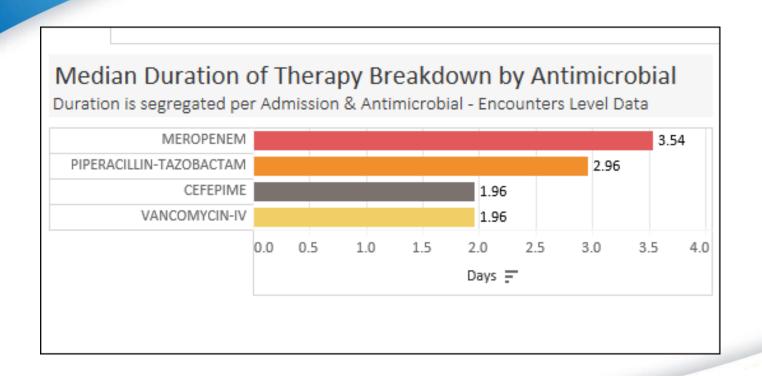


Tableau Report: DOT/1000 Patient DaysPresent

Tableau Report: Duration of Therapy

Impact on Clinical Outcomes

- 1 study reviewed iVents documentation by ASP
 - AS interventions resulted in decrease in antibiotic use
 - Easy documentation allowed ASP to demonstrate their impact
- 1 study integrated CDSS with Epic
 - Decrease in use of all antibiotics, ant-MRSA and antipseudomonal agents

Cook PP, et al. *Antimicrob Agents Chemother* 2011; 55:5597-601. Schulz L, et al. *Infect Control Hosp Epidemiol* 2013; 34:1259-65.

Barriers and Challenges

- Resources for implementation and maintenance
 - Costs of software and hardware
 - IT personnel
 - Time to develop, build, test
- Administrative, ethical, legal issues
 - Electronic alerts can result in premature antibiotic discontinuation
- Excessive alerts "alert fatigue"

Which of the following AS tools are available in Epic?

- A. Real-time antibiogram reporting
- B. Identification of patients for AS interventions
- C. Days of therapy (DOT)/1000 patient days present metric
- D. All of the above

Enhancing ASP Activities: Patient Lists

- ✓ Prospective audit and feedback real time alerts
 - ✓ Bug and drug
 - ☑ Diseases based (e.g., community-acquired pneumonia)
 - Customizable
- ✓ Treatment guidelines- order sets
- Entry level AS tools

Enhancing ASP Activities: Reports

- Antibiograms
 - ✓ Real time
 - ✓ Some user customization in real time
- ✓ Antibiotic use data DOT/1000 patient days present
 - ✓ Real time- graphs and tables
 - □ User customization in real time
 - ✓ NHSN AUR reporting
- ☑ Patient outcomes tracking in real time
- ✓ Prescriber metrics and patient outcomes data

How to Make Customization Successful

- Presence of and leadership by AS team
 - Experience of AS team in performing AS interventions
 - Be prepared! Have a wish list! Dedicate your time to this up front!
 - Don't give up easily when encountering barriers
 - Make sure to test your alerts before go-live
- Dedicated IT resources upfront
 - Have someone with microbiology background if possible
- Community hospitals- partner with other hospitals within healthsystem

Key Takeaways

- Key Takeaway #1
 - Epic AS module can increase effectiveness and efficiency of ASP personnel
- Key Takeaway #2
 - Implementation can be costly and resource demanding upfront
- Key Takeaway #3
 - Single EHR record and customizable alerts allows for adaptation by many users

Acknowledgements

- The Johns Hopkins Hospital ASP team
 - Sara Cosgrove, MD, MS
 - Kate Dzintars, PharmD, BCPS, AQ-ID
 - Alice Hsu, PharmD, BCPS, AQ-ID
 - Pranita Tamma, MD, MHS
- Johns Hopkins Bayview Medical Center ASP team
 - Victoria Adams-Sommer, PharmD, BCPS, AQ-ID
 - Jennifer Townsend, MD
- Hopkins Epic IT team
 - Amanda Miller, BS, M(ASCP)^{CM}
 - Nicole Mudassar, MLS (ASCP)

Optimizing "Add on" Clinical Decision Support Systems for Antibiotic Stewardship

Kristi Kuper, Pharm.D., BCPS
Sr. Clinical Manager, ID
Vizient
Houston, TX

Learning Objectives

- List antimicrobial stewardship tools available in electronic health record (EHR) platforms.
- Review commonly used clinical decision support systems (CDSS) and their role in enhancing antimicrobial stewardship.
- Describe how both EHR and CDSS can be used together as a successful antimicrobial stewardship tool.

- HELP Health Evaluation through Logical Processing
- Daily at 1pm, a computer-generated alert printed out a therapeutic antibiotic monitor report in ID department
- Utilized computer algorithms to screen for inconsistencies between antibiotics and microbiology test results
- In once year, 420 actionable alerts led to change or start therapy in 125 cases
- Physicians were previously unaware of relevant susceptibility test results in 49% of alerts

And Then (in the 2000's) Came...

- An explosion of add on clinical decision support systems (CDSS) that run in parallel to Electronic Health Records (EHRs)
- Differentiators
 - Infection Prevention
 - Drugs covered
 - Reports
 - Customization
 - Portability
 - Timeliness to generate real time alerts

Assessment Question #1

How many commercial "add on" clinical decision support systems are currently available in the United States that have functionality for antibiotic stewardship?

- **A**. 4
- B. 6
- C. 10
- D. 14

"Add On" CDSS Vendors

Product Name	Company (also known as)	AU/AR Reporting
360 Care Insights	Truven Health Analytics	None
Bluebird	Intelligent Medical Systems	AU,AR
ICNet	Baxter Healthcare	AU
ILUM	ILUM Health Solutions (Merck HSS)	AU
IPAC	CKM Healthcare	Unknown
Medici	Asolva Inc	AU
Midas Health Analytics Solutions	Conduent Health	None

AU= Ability to report to CDC Antibiotic Use (AU) module in NHSN as of 10/1/17 AR= Ability to report to CDC Antibiotic Resistance module in NHSN as of 10/1/17 Source http://www.sidp.org/aurvendors

"Add On" CDSS Vendors

Product Name	Company (also known as)	AU/AR Reporting	
Patient Event Advisor	BD (Medmined)	AU	
QC Pathfinder	Vecna Technologies	None	
RL Solutions	RL Solutions	AU	
Sentri 7	Wolters Kluwer (Pharmacy One Source)	AU	
Teqqa	Teqqa	AU	
Theradoc	Premier	AU,AR	
VigiLanz	VigiLanz	AU,AR	

AU= Ability to report to CDC Antibiotic Use (AU) module in NHSN as of 10/1/17 AR= Ability to report to CDC Antibiotic Resistance module in NHSN as of 10/1/17 Source http://www.sidp.org/aurvendors

Categories of "Add on" Systems

Antibiotic Stewardship Only

Total Medication Stewardship

Total Medication Stewardship (including antibiotics) + Infection Prevention

Image source: https://phil.cdc.gov

VALUE OF AN "ADD ON" CDSS

Decreases Inappropriate Antibiotic Use

- 5 year quasi experimental, time interrupted series at a 677 bed academic medical center in Quebec.
- Utilized a CDSS + ASP team + prospective audit and feedback.
- N =35,778 pts reviewed.
 - Antibiotic defined daily dose/1000 patient days decreased by 32.4 (p<0.01)
 - Average length of stay decreased 0.92 days (p<0.01);
 - Spend decreased \$19,649 (p=0.01)

Improves Clinical Workload Efficiency

- Academic Medical Center
 - 92 rule based alerts
 - 80 full time pharmacists + residents
 - 24/7 alerting
 - Total 399,979 alerts generated annually
 - 19% related to antibiotics
 - 17,333 documented interventions (4.3%) annually

Integrates with Rapid Diagnostics to Provide Real Time Actionable Results

- University of Michigan Health System study compared outcomes in 501 patients with bacteremia or candidemia
 - Pre- intervention group (n=256) and post intervention (n=245)
- Post intervention group combined MALDI TOF results with ASP intervention using add on CDSS
- Decreased time to organism identification (84.0 vs 55.9 hours, p<0.001)
- Improved time to effective antibiotic therapy (30.1 vs 20.4 hours, p=0.21)
- Additional benefits with mortality, length of ICU stay, and recurrent bacteremia

Improves Quality of Care

- Disease state
 - Candidemia
 - HIV
 - Asymptomatic bacteriuria
- Core Measure compliance
 - Influenza vaccination
 - Sepsis

Sepsis Bundle

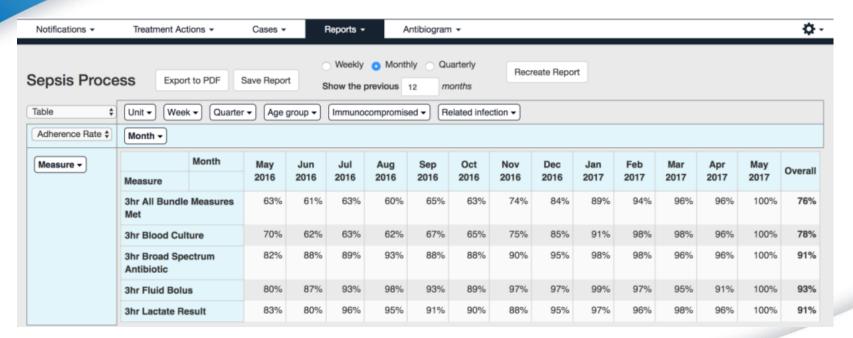


Image Source: Teqqa. Used with Permission

COMMONALITIES ACROSS SYSTEMS FOR ANTIBIOTIC STEWARDSHIP

General Functionality

Department	Areas of Interest/Focus
Infection prevention	 NHSN tracking and reporting requirements Identification of outbreaks/infection clusters Ability to identify organisms with unusual resistance patterns
Microbiology	Antibiogram capabilities (CLSI compliant)
Prescribers/ASP Team	 Ability to suppress or triage alerts Individual customization of alerts
Pharmacy	 Basic ASP interventions Intervention tracking Target medication monitoring Drug utilization reporting (e.g. Days of Therapy per 1000 pt days)

Basic Stewardship Interventions

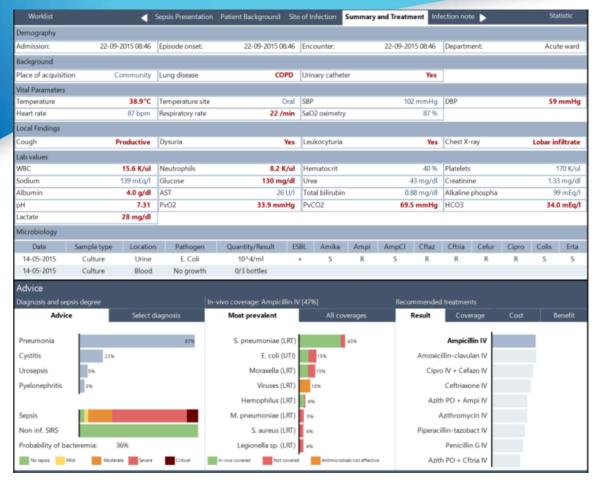
- Bug- Drug Mismatch
- Positive culture but no antibiotic
- Receiving antibiotic but no positive culture
- IV to PO
- Antibiotic time out

- Duration of therapy alerts
- Duplicate antibiotic therapy
- Dose adjustments due to renal or hepatic function
- Therapeutic drug monitoring
- Restricted drug monitoring

DIFFERENTIATORS FOR ANTIBIOTIC
STEWARDSHIP
OR "THIS IS NOT YOUR MOTHER'S
CLINICAL DECISION SUPPORT SYSTEM
ANYMORE"

Unique features

- Interface with drug information systems
- Smart phone /tablet integration
- Key word searches
- Links to institutional guidelines
- Dose recommendations based on patient specific information
- Manages prior authorization
- Predictive analytics



Assessment Question #2

Which of the following is an example of how predictive analytics can be applied to antibiotic stewardship through a clinical decision support system?

- A. Identification of patients in the early stages of sepsis
- B. Review of previous culture(s) and susceptibilities to predict potential cause of a new infection in a patient
- C. Assessing available patient parameters and cross referencing it to a population based database
- D. All of the above

Image Source: TREAT SYSTEMS. Used with permission.

Predictive Analytics

Intersection of Population and Personal Health

- Personalized Antibiotic
 Therapy
 - Therapy recommendations based on individual patient characteristics and population parameters

Image Source: Teqqa. Used with Permission

Outpatient Integration

Image Source: Teqqa. Used with Permission

Benchmarking

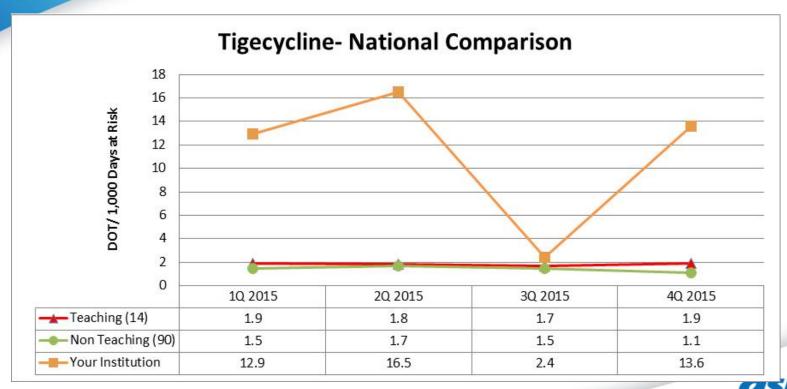
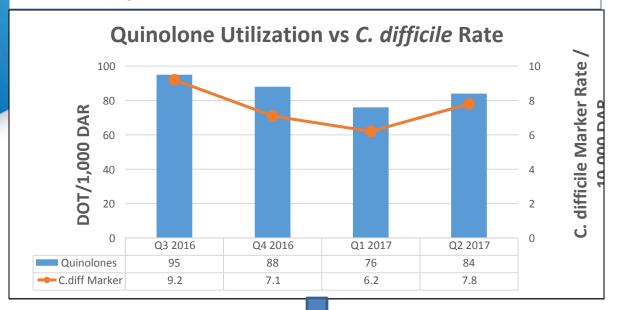



Image Source: BD MedMined. Used with permission

Comparison of utilization to resistance rates

Measuring Economic Impact

	Pts w	Set	DRG-Adjusted Add'l Direct Cost		DRG-Adjusted Add'l Profit/(Loss)		DRG-Adjusted Add'l Length of Stay	
NIM Set	NIM	Freq.	Average	Cumulative	Average	Cumulative	Average	Cumulative
stool(1)	55	12.11%	\$3,500	\$192,499	(\$3,093)	(\$170,089)	3.51	192.94

Image Source: BD MedMined. Used with permission

Reporting Capabilities

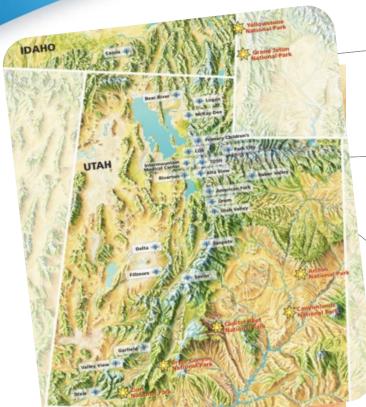
- User access
- Alert firing patterns
- Pre-populated dashboard
- Readmission tracking and reporting of rates

Key Takeaways

- Key Takeaway #1
 - Continually refine the add on CDSS after implementation to improve efficiency and eliminate alert fatigue
- Key Takeaway #2
 - Periodic data validation is important
- Key Takeaway #3
 - Monitor for unintended consequences
- Key Takeaway #4
 - Predictive functionality is becoming a strength of the add on CDSS and should be explored

How to use Electronic Health Records and Clinical Decision Support Systems Together for Antibiotic Stewardship

Whitney Buckel, Pharm.D., BCPS-AQ ID
System Antimicrobial Stewardship Pharmacist Manager
Intermountain Healthcare
Salt Lake City, UT


Learning Objectives

- List antimicrobial stewardship tools available in electronic health record (EHR) platforms.
- Review commonly used clinical decision support systems
 (CDSSs) and their role in enhancing antimicrobial stewardship.

 Describe how the EHR and CDSS can be used together as a successful antimicrobial stewardship tool.

Intermountain Healthcare Highly-Integrated Health System

Hospitals

Since 1975

- 23 hospitals
- 2,784 licensed beds

Select-Health

Since 1983

- Health plans
- 700,000+ members

Medical Group

Since 1994

- 1,200 employed physicians
- 558 advanced practice clinicians

Supply Chain Center

Since 2015

 Centralized distribution center

Facility	Bed Size		Facility	Bed Size	
Bear River	16		Cassia	25	
Delta	18		Cedar City	48	
Fillmore	19		Orem	24	
Garfield	14		Layton	43	
Heber	19		Park City	30	
Sanpete	18		Sevier	42	
		TOSH	40		
Facility			Bed Size		
Alta View			71		
American Fork			89		
Logan			146		
Riverton			97		

Facility	Bed Size
Dixie	245
LDS Hospital	241

Facility	Bed Size
IMC	504
McKay Dee	305
Primary Children's	289
Utah Valley	395

Hospitals

Maximizing Technology

- Empiric therapy
- Therapy modification
- Data tracking and reporting
- Research

All can be aided by add-on CDSS systems

Empiric Therapy

Objective:

- Reduce inappropriate variability in empiric antibiotic use
 Strategies:
- Align antibiotic selection with local antibiogram in order sets
- Risk stratify who should receive broad-spectrum therapy

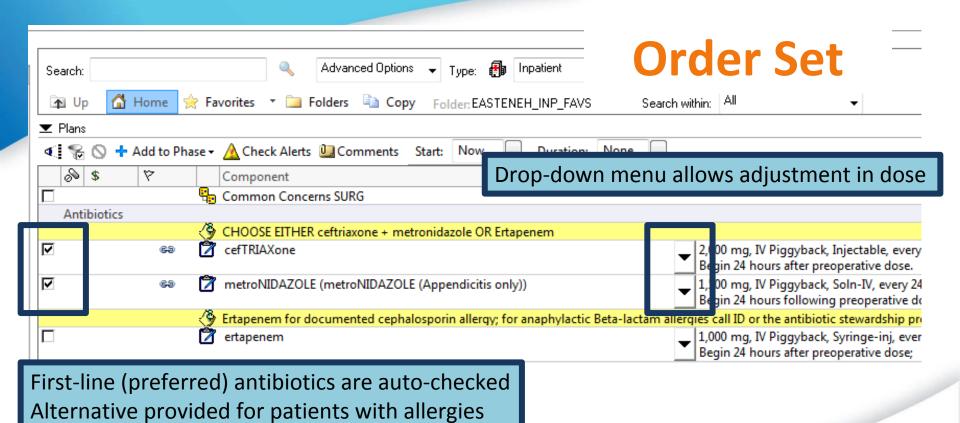


Image Source: iCentra. Used with permission.

Patient Information

EMPI	Patient Name	Gender	DOB
540958523	TEST, ALERT	M	05/05/1955

Risk Stratification

Save Changes Delete Cancel DRIP Score ■ Risk Factors (2) Antibiotic use (IV or PO, in the last 60 days) (2) Resident of Long Term Care Facility (current) (2) Tube Feeding (NG/NJ/PEG, current) (2) Infection with a Drug Resistant Pathogen (prior 12 months) ✓ (1) Recent Hospitalization (>48 hours in last 60 days). ☐ (1) Chronic Pulmonary Disease (1) Poor Functional Status (Non-ambulatory) (1) Gastric Acid Suppression (PPI or H2 blocker, last 14 days) ✓ (1) Wound Care (current, or wound on exam) (1) MRSA Colonization (or infection, prior 12 months) (0) No Risk Factors * Score Date 05/03/2016 Facility LDS - 128 Score Total

DRIP score ≥ 4: Vancomycin, cefepime, plus azithromycin

DRIP Implementation & Results

• ER physicians, inpatient hospitalists and pharmacists

Observed Antibiotic Usage	DRIP n (%) (95% CI)	Usual Care n (%) (95% CI)	Difference, % points (95% CI)	P-value
Inadequate Spectrum	6 (0.67) (0.31-1.5)	3 (0.93)	-0.25 (0.742.1)	NS
Any Broad Spectrum Antibiotic Use	199 (22.6) (19.7-25.1)	99 (30.6) (25.8-35.8)	-8.3 (-2.814.1)	0.003

Practical Considerations

Strengths of add-on systems

- Provide data for developing order sets
- Facilitates complicated risk scores
- Relatively easy to extract data and update risk scores

Limitations of add-on systems

- Not easily integrated into workflow
- Dependent upon what data shared from EHR
- Needs to be tailored to the setting

Therapy Modification

Objective:

Use the narrowest agent via the most optimal route for the shortest duration

Strategies:

- Intravenous (IV) to oral (PO) conversion alerts
- Bug-drug mismatch alerts for therapy escalation
- Finalized culture results alerts for de-escalation
- Duration of therapy alerts

Decision to Implement a Separate Clinical Decision Support System (CDSS)

We decided we needed a CDSS in order to:

- Prioritize who would benefit from infectious diseases review
- Expand prospective review to weekends and holidays
- More efficiently track and quantify interventions

Selection Criteria for our CDSS

After careful consideration, we chose our product based on:

- Clinically meaningful, consistently updated, rule based alerts
- Easy to use and thus easy to train all pharmacists to use it
- Integrated and useful reports
- Highly qualified and timely customer support

CDSS Implementation

After reviewing CDS systems and selecting best fit

Work with IT to send and validate data interfaces (months)

Review prepackaged alert options; determine team members ID pharmacist focused use and evaluation (2 weeks)

Develop usage guidelines for pharmacists (6 - 8 weeks)

Education

Work with CDSS to solidify priority list of alerts; develop standardized reports Official roll out date for use by frontline pharmacists (2 weeks)

Trouble-shooting; data feedback to frontline pharmacists

Ongoing:

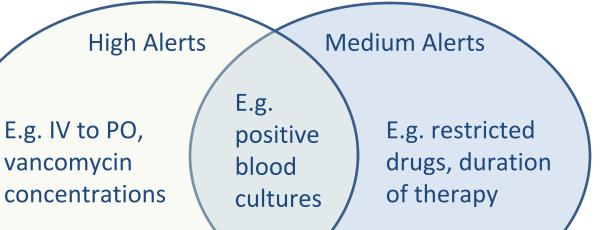
- Education
- Addition, deletion, and refinement of alerts
- Data tracking and reporting

Different Practice Models

Hospital A

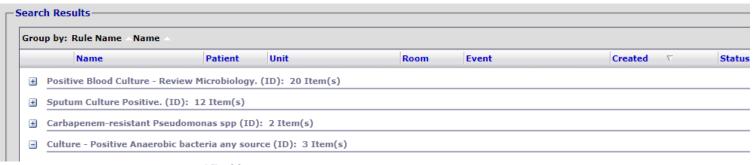
Two unit-based pharmacists evaluate and acknowledge all alerts

Hospital B


The ID pharmacist evaluates and acknowledges all alerts

Hospital C

All unit-based pharmacists evaluate one set of alerts; ID pharmacist evaluates another set



"High" versus "Medium" Alerts

Example of Therapy Modification

Spectrum misses:

- Anaerobic cultures
- Bug-drug mismatches

12086	IM_Orthopedics Nursing Unit	T716	Propionibacterium acnes	09/07/2017 12:33	Not Acknowledged
2 Item(s)					
12085	IM_Medical Oncology Unit	T914	Veillonella species	09/05/2017 14:52	Not Acknowledged
12085	IM_Medical Oncology Unit	T914	Bacteroides fragilis	09/05/2017 14:52	Not Acknowledged

tain Docult\ /TD\+ 40 Thom/c\

Image Source: VigiLanz. Used with permission.

CDSS Education

- Provided educational documents
 - Basic Training Reference Guide
 - Clinical Guidelines and References for Alerts
- Each pharmacist received 1-on-1 hands-on training
- Each pharmacist completed a competency checklist

Intermountai **Basic Training**

If there are any questions, please contact:

Whitney Buckel, PharmD, BCPS Antimicrobial Stewardship Clinical Pharmacist Intermountain Medical Center Office: (801) 507-7784 (office Cell: (360) 609-0608 (cell)

Lync or Email at whitney.buckel@imail.org.

Why are we doing this? There is a national comorganisms. As a part of this, there will be a nation all hospitals, which will be audited by CMS and future regulatory requirement. In addition, this Responding to these alerts will facilitate improv

Contents

Getting Started..... Daily Expectations..... Leaving Notes for Other Pharmacists Not Acknowledged Status..... Follow Up Status Acknowledging Activations..... Rule Specific Information..... Continuous Quality Improvement Expectations for Infectious Diseases Pharmacist Questions and Answers

Below is a list of all activations that have been s These have been chosen based on patient safet following pages will give information about the activated on a patient.

Staphylococcus aureus positive blood culture....

Staphylococcus aureus positive urine culture.....

Contents

Employee Name:			
By the end of this training, I am able to		Date	Method of Assessment
Successfully log in to VigiLanz			
Set up pharmacy surveillance home page			
Create a saved search			
Set page preferences			
Understand the difference in the following			
activation statuses:			
 Not Acknowledged 			
 Follow-up 			
 Acknowledged 			
Acknowledge activations, specifically:			
 Select appropriate status 			
 Select appropriate category 			
Write an appropriate comment			
Leave a message for another pharmacist:			
 Other front-line pharmacists 			
 ID/Transplant pharmacist 			
Understand why it is important that I not			
acknowledge all alerts			
Access documents on TeamSpace			
I have reviewed the Rule List and Expectation	ns		
I know the expectation is to acknowledge 95	5%		
of alerts for my unit within 24 hours			
I am committed to continuous quality			
	now		
if I have any cool ideas!			
	of Assess		
Direct Observation	S	Skill Demo	onstration
/ Verbal Response	T	Locting	

0	Direct Observation	S	Skill Demonstration
V	Verbal Response	Т	Testing

Employee Signature:	 Date:
Evaluator Signature:	 Date:

CDSS Documentation

- Minimized entries: Acknowledge, Category and Comment
- Shortened list of categories
 - Originally: 17 options
 - E.g., "Renal function reviewed recommended to provider NOT accepted"
 - Now only 7 options
 - E.g., "Antimicrobial dose/route optimization"
- New comment feature: "Great Catch"

Practical Considerations

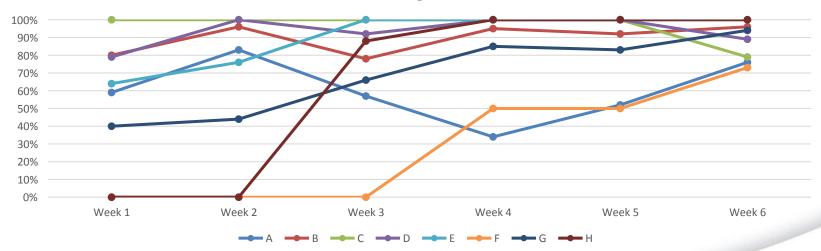
Strengths of add-on systems:

- Limited front-end building requirements
- Very easy to add customized alerts
- Easy documentation and data extraction

Limitations of add-on systems:

Has to be used to be useful!

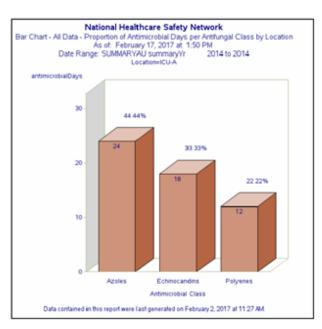
- Integration into the workflow
- Not just a technical challenge: also requires adaptive change
- Metrics and feedback of metrics to pharmacists is key


Tracking and Reporting

- Process Metrics Focus for Today
 - Alerts and interventions
 - Antibiotic use rates
- Outcomes Metrics
 - Antibiotic resistance and Clostridium difficile rates

Track and Report: Interventions

% Alerts Acknowledged at Facilities A-H

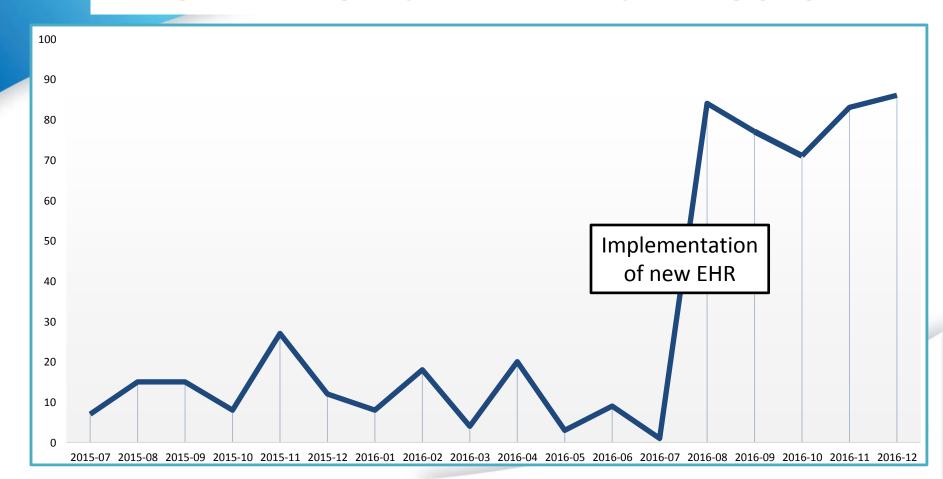

Track and Report: Great Catches

- "Great Catch. Pharmacist notified physician to change therapy based on culture and sensitivity review. Patient was sent home on Augmentin. E. coli came back resistant. Notified surgery PA of culture results and she was going to follow up with patient's surgeon to change antibiotics."
- Joylyn Call, PharmD

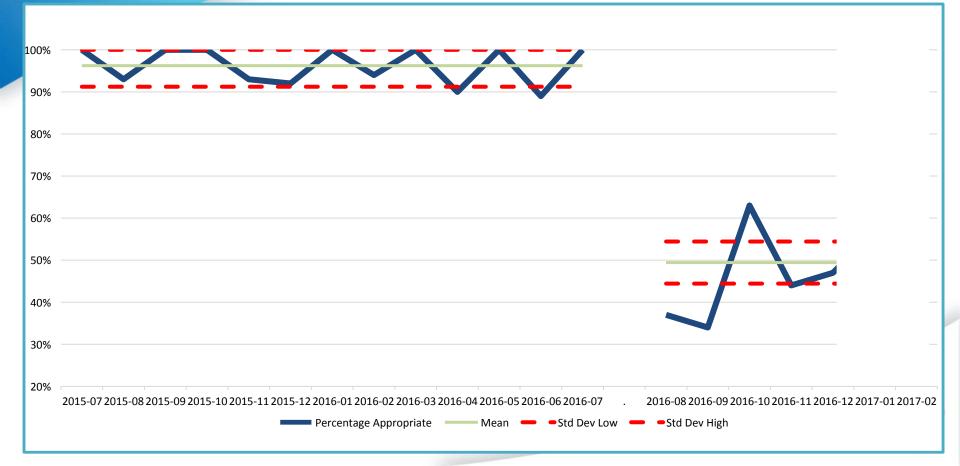
- "Physician was not aware 2/2 sets positive for S. aureus and mBAL too. Physician thought it was 1/2 bottles contaminant. Informed by pharmacist, vancomycin started. Great catch."
- Stephanie Chauv, PharmD

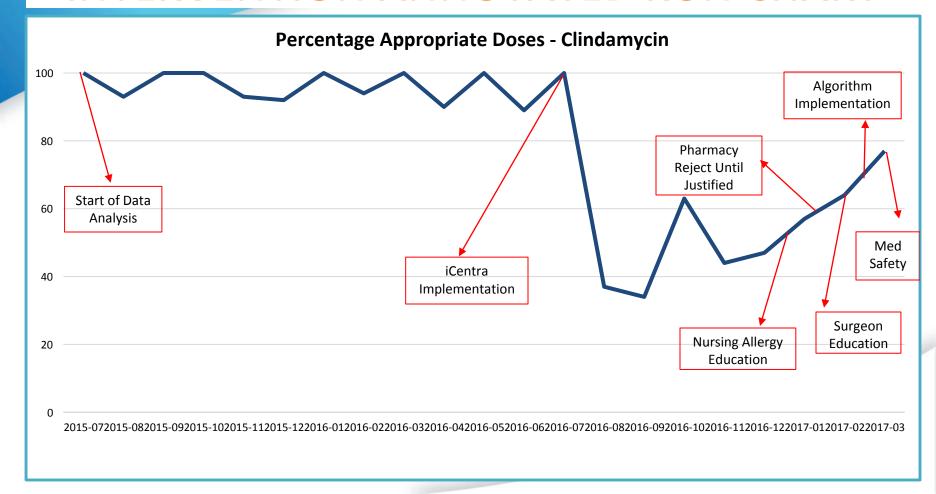
Track and Report: Antibiotic Use

- Overall antibiotic use at a high-level
 - NHSN AUR option reporting to the CDC
 - Numerator: days of therapy (eMAR)
 - Denominator: patient days present
 - CDSS systems and EHRs can work together to process antibiotic use data



Track and Report: Antibiotic Use


- Specific antibiotic use or antibiotic use in specific areas
 - Review and identify variation and trends
 - Significant trends can become a targeted project
 - E.g., clindamycin usage after new EMR implementation by Laurie Blankenship, PharmD; Park City Hospital Pharmacy Director


NUMBER OF CLINDAMYCIN DOSES

APPROPRIATENESS OF CLINDAMYCIN DOSES

INTERVENTION ANNOTATED RUN CHART

Research

- Retrospective studies
 - Reviewing active alerts and interventions
 - Utilize auto-verify alerts
- Prospective studies
 - Patient identification for enrollment in trials
 - Real-time stewardship interventions

Self-Assessment Question

When implementing an add-on stewardship program, which of the following is most important:

- A. A detailed documentation process
- B. Utilization of both Infectious Diseases and front-line pharmacists
- Having a training assessment tool
- D. Tracking and feeding back data on alerts and interventions

Key Takeaways: When to Synergize CDSS with or within your EHR

- To implement complicated empiric therapy recommendations
 - Example: Scoring methods for assessing risk for drug resistance, data to develop HER order sets, and empiric-therapy based alerts
- To identify needed therapy modifications
 - Example: Smart alerts to trigger pharmacist evaluation (IV to PO), bug-drug mismatch alerts, and/or rapid diagnostic test results
- To track and report results
 - Example: Alert acknowledgement, intervention, and/or antibiotic use rates

Acknowledgements

- Laurie Blankenship, PharmD
- Lindsay Butterfield, PharmD and the Pharmacy Informatics Team
- Richard Ensign, PharmD and the Pharmacy Analyst Team
- Peter Jones, MS, Valoree Stanfield, MS, and Eddie Stenehjem, MD and the System Antimicrobial Stewardship Team
- Brandon Webb, MD and Nat Dean, MD and Pneumonia Workgroup
- David Skarda, MD and Surgery Clinical Program

Leveraging Technology and Informatics for Antimicrobial Stewardship: Questions?

Edina Avdic, Pharm.D, M.B.A., BCPS-AQ ID Kristi Kuper, Pharm.D., BCPS Whitney Buckel, Pharm.D., BCPS-AQ ID

